
International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

QOP: Proposed Framework for Materialized View
Maintenance in Data Warehouse Evolution

Hemant Jain, Anjana Gosain

Abstract— A data warehouse is generally applied to discover and integrate data from independent data source. In data warehouse large

numbers of materialized views are stored in order to provide fast access to the integrated data. Maintenance of materialized views is one of

the critical tasks in warehousing environment. They must be up to date to ensure accurate results and also to speed up the query

processing significantly. Updating of materialized views is also important to ensure consistency because the source data usually change

over time. In literature, few frameworks have been proposed for materialized view maintenance. Each of these frameworks has different

characteristics, capabilities and complexities. But none of these frameworks focus on query optimization. In this paper, we present a

theoretical framework called QOP to support data warehouse view maintenance. The proposed framework improves the functionality of

previously proposed frameworks by primarily focusing on changes in the maintenance phase. This framework also provides the additional

concept of query optimization in the maintenance phase.

Index Terms— Data warehouse, Data source, Incremental maintenance, Materialized view, Query optimization, Self maintenance, End

Users.

—————————— ——————————

1 INTRODUCTION

Data warehouse act as a central repository that collect data
from different autonomous, distributed and heterogeneous
data sources. Traditionally, data warehouses have been used
to provide storage and analysis of large amounts of historical
data [20]. Due to the large amount of data in the data ware-
house, the issue of maintaining a materialized view draw
much attention. Materialized views are the derived relations,
which are stored as relations in the database [15]. Materialized
views can be used for reducing query response time. Material-
ized views approach is quite promising in efficiently process-
ing the queries because of the query intensive nature of data
warehousing. To keep, a materialized view up-to date there is
a need to propagate the changes from remote data source to
the destined materialized view in the warehouse. Data ware-
house contains many of materialized view to access data
quickly and efficiently. In a data warehouse, the query expres-
sions that define materialized views may be stored at different
database sources residing at different sites. The sources may
inform the data warehouse when an update occurs but they
might not be able to determine what data is needed for updat-
ing the views at the data warehouse [18]. To avoid accessing
the original data sources and increase the efficiency of the
queries posed to a DW, some intermediate results in the query
processing are stored in the DW. These intermediate results
stored in a DW are called materialized views [17].

Many algorithms relating to the maintenance of material-
ized views have proposed in the literature. These algorithms
may be divided into two categories i.e. incremental or self
maintainable. In Incremental view maintenance approach,

only changes in the materialised views of the data warehouse
are computed rather than recomputing every view from
scratch [19].

 On the other hand when a view together with a set of aux-
iliary views can be maintained at the warehouse without ac-
cessing base data, we say the views are self-maintainable [2].

For incremental maintenance materialized views is defined
as select-project-join (SPJ) with N base relation (R1, R2,....Rn).
The materialized view in the data warehouse is defined as:

V=Пproj(σcond(R1⋈R2.... ⋈Ri......⋈Rn)
Where proj is a set of attribute name and cond is a Boolean

expression, since R1,....Rn are separate relations.
Once the changes in the base relations are obtained, the

changes in the MV will be calculated. MV includes insert, de-
lete, and modification in the tuples. For the insert tuples ΔV is
incremental change. Then we increase tuple in MV; for the
delete tuple, if ΔR1 is removed from R2, then ΔR1= ΔR1⋈ΔR2
and then equivalent tuple is removed from the MV.

The changes in the base relation (R1, R2,... Rn) will affect the
change in MV. The change in the MV can be achieved in ac-
cordance with (R1,R2,....Rn).

For example, V<R1,R2> show changes of MV which are
considered by R1 and R2 changes.

V=Пprojσcond(R1⋈R2)
Hence incremental maintenance can be written as

V<R1,R2>.
For self maintenance view V is defined over a set of base re-

lations R, i.e (R= R1, R2.....Rn). After the changes in ΔR is ob-
tained to base relations in reaction to which view requests to
be maintained. If ΔV can be computed using only the MV in
data warehouse and the set of changes in base relations ΔR,
then the view is known as self maintainable otherwise we are
involved a set of auxiliary view denoted by A. Defined on the
same relation as view V. Therefore the set of views {V}UA is
self maintainable.

————————————————

 Hemant Jain is currently pursuing M.Tech in computer science & engi-
neering from Guru Gobind Singh Indraprastha University, Delhi, India. E-
mail: hemantjain.ipu@gmail.com

 Dr. (Mrs.) Anjana Gosian is working as reader in University School Of
Information technology. She obtained her Ph.D. from GGSIP University,
Delhi, India. E-mail: anjana_gosain@hotmail.com.

mailto:hemantjain.ipu@gmail.com
mailto:anjana_gosain@hotmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The proposed framework expanded the WHIPS (Ware-
housing Information Prototype System) [3] by introducing the
concept of query optimization and combines both incremental
& self maintenance with proposed framework. It analyzes
process between the sources and warehouse is made by using
FIFO network.

The purpose of the query optimization is to optimize and
reduce the complexity of the query while taking into account
of present materialized view. In a relational database all in-
formation can be found in a series of tables. A query therefore
consists of operations on tables. The most common queries are
Select-Project-Join queries [23]. For a given query, there are
many of plans that a DBMS can follow to process it and pro-
duce its answer. All plans are equivalent in terms of their final
output but vary in their cost, i.e., the amount of time that they
need to run. The area of query optimization is very large
within the database field [24]. Materialized views mainly con-
tained results of the queries.

The organization of the paper is as follows, literature re-
view is discussed in section 2. In section 3, we discuss our
proposed framework in detail. Section 4 presents the frame-
work process discussed in previous section. And finally, we
conclude in section 5.

2 LITERATURE REVIEW

The related work of various authors in context to incremental
view maintenance [3, 6, 7, 8, 10, 11, 12, 13, 16] is presented be-
low:

In [3] authors have described the architecture of the Whips
prototype system, which collects, transforms, and integrates
data for the warehouse. In [6] authors have proposed a new
incremental approach to maintaining materialized views both
in the data warehouse and in the data marts. In [7] authors
have proposed a new compensation algorithm that is used in
removing the anomalies, caused by interfering updates at the
base relations. In [8] authors have proposed a maintenance
algorithm that does not need the compensation step and ap-
plies to general view expressions of the bag algebra. In [10]
authors have proposed an incremental maintenance method
for temporal views that allows improvements over the re-
computation from scratch. In [11] authors have presented an
incremental view maintenance approach based on schema
transformation pathways. In [12] authors have tackled the
problem of finding the most efficient batch incremental main-
tenance strategy under a refresh response time constraint; that
is, at any point in time. In [13] authors have developed the
change-table technique for incrementally maintaining general
view expressions involving relational and aggregate opera-
tors. Incremental maintenance technique is adopted in this
paper [16]. In this idea and strategy of minimum incremental
maintenance is presented.

The related work of various authors in context to self main-
tainable maintenance [1, 2. 4, 5, 9, 14] is presented below:

In [1] author has reported on some interesting new results
for conjunctive-query views under insertion updates. In [2]
authors have showed that by using key and referential integ-

rity constraints, they often can maintain a select-project-join
view without going to the data sources. In [4] authors have
proposed an incremental technique for efficiently maintaining
materialised views in these high performance applications by
materialising additional relations which are derived from the
intermediate results of the view computation. In [5] author has
focused on the problem of determining view in the presence of
functional dependencies. In [9] authors gave a preliminary
result on self-maintainability of deletions of views over XML
data. This paper [14] provided an online view self-
maintenance method based on source view's increment to
keep the materialized view consistent with the data source.

The above mentioned literatures have highlighted efforts
related to incremental and self maintenance which is exercised
in our proposed framework. The next section presents the
proposed framework which has taken accounts the modifica-
tion done at the maintenance level.

3 THE ARCHITECTURE OF PROPOSED FRAMEWORK

QOP

3.1 Framework Level & components

In this Framework, relational model is used to represent the
warehouse data. In the relational model, views are defined
and relation stored in the warehouse. The Framework is di-
vided into four levels namely- Source level, Maintenance level,
Warehouse level and User level. At the Source level, source
data is converted in to the relational model by using the moni-
tor and formatter and then sent it to the next higher level. In
maintenance level, the maintenance process between the
sources and warehouse is done by using FIFO network. In
warehouse level, warehouse receives all view definitions and
modifications to the specific syntax of the warehouse database;
internal maintenance is also done in this level. In User level,
users communicate to warehouse by using data query. Each
level comprises of a number of components to manage par-
ticular tasks.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Fig 1. Architecture of QOP: Proposed Framework

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Now, let us discuss the working of the above mentioned
levels and their respective components in more details:

Table1.

Source Level Components

 1. Source Level

Data
Source

It is used to feed data into the data
warehouse. It can be of any format like
plain text file, relational database, other

types of database etc.
Monitor It detects the modifications that are per-

formed on its source data. These modifica-
tions are then sent to the maintenance

level.
Wrapper It receives all view definitions and all

adjustments to the view data in an internal
format, and converts them to the specific

syntax of the warehouse database.

Table2.

Maintenance Level Components

2. Maintenance Level

Update
Detector

It is responsible to achieves relational
updates from data source by different
ways and affixes them to the relational

update row.
Timeline

Module
It provides consistency of view main-
tenance during parallel processing.

Temporal
Counter

It is responsible for correct detection of
concurrent updates.

Source
Handler

It calculates the source updates and
handles the source updates and affixes

them in to the source update row.
Source

Update
Manager

It is responsible for transferring the
latest source updates to the view mainte-
nance manager and managing each up-

date and its relational updates.
Query

Optimizer &
Processor

It handles optimization and execution
of declarative queries. After receive main-
tenance queries from the warehouse han-
dler, it processes the query and returns

the precise query result.
Mainte-

nance Man-
ager

It is responsible for receiving the latest
Data source updates from source update
manager, generating view maintenance
tasks and affixes them to the source up-

date row.
Ware-

house Han-
dler

It puts the final maintenance query re-
sult into the query result row and informs

the view maintenance manager.
View

Update
Manager

It uses the maintenance query results
to update the materialized views at the

data warehouse.

Commit
Group

Commit group is used by view update
manager to save the maintenance result

temporarily.
View Self

Maintenance
It is responsible for maintaining the

materialized views at the data warehouse
without access to the base relation.

Table3.

Warehouse Level Components

3. Warehouse Level

Data
Warehouse

A data warehouse (DW) is a database
used for reporting and analysis. The data

stored in the warehouse are uploaded from
the operational systems.

View
Specifier

It parses the view into an internal struc-
ture also it adds significant information

from the metadata.
Delta

Tables
It is used to store the modifications to be

applied to the materialized views in the data
warehouse.

Table4.

User Level Components

4. User Level
Data

Query &
Analysis

Component

It is responsible for communication be-
tween users and data warehouse by using
data queries, it also fulfilling the informa-

tion needs to specific end users.
Adminis-
trator

Views are defined at the view specifier
by an administrator.

4 FRAMEWORK OPERATION

4.1 Source Level

This level represents the different data sources that feed data
into the data warehouse. Each source may be completely in-
dependent of the warehouse or it can be of any format and
their functions are isolated from others. DWH is generally
applied to explore and integrate data from several data
sources, which can be seen as a set of materialized views. In
this source data is converted into relational data by using the
source monitor and wrapper. Each monitor detects the modifi-
cations that are present into the data source. Then these modi-
fications are sent to the maintenance level. Each wrapper is
responsible for translating single source queries from the in-
ternal relational representation used in the view tree to queries
in the native language of its source [3].
Below shows the communication processes between source
level and the warehouse level:

1. Data source will send out notification to the ware-
house after it finished a data updating at the source
level.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2. Data source will send out view update notification
when it plans to do materialize view update. It will
wait for the acknowledgement from the data ware-
house before executing the view update.

3. Warehouse receives the notification and sends back
the query to the source level about the update.

After finishing the maintenance process warehouse will send
out acknowledgement to data source level via maintenance
level to notify it of the accomplishment of the maintenance of
materialized view in data warehouse.

4.2 Maintenance Level

Processing of maintenance level:

1. A timeline module provides consistency of view

maintenance during parallel processing. It assigns a
timestamp to each incoming message and query re-
sult message. Temporal counter is used for correct de-
tection of concurrent updates and also handling par-
allel processing. In this, all the updates will be an-
swered at the same time in parallel manner.

2. The source update detector achieves relational up-
dates from data source by different ways and affixes
them to the relational update row according to their
committed sequence. Using this relational updates of
a committed sequence and significant base relations,
the source handler evaluates the equivalent source
update based on the data source in the materialized
view and affixes it in to the source update row.

3. The source update manager sends data source up-
dates to the maintenance manager. The maintenance
manager allocates a unique maintenance number for
each received data source update and affixes them to
the source update row. A task related to view main-
tenance is concerned by the maintenance manager for
each data source update in the source update row and
the equivalent query arrangement is executed to the
warehouse handler with the help of query optimizer
& processor.

 Query optimizer & processor includes four parts,
functionality of following parts is given below [24]:

 Parser – It checks the validity of the query and

then translates it in to an internal form, usually a
relational calculus expression or something
equivalent.

 Optimizer – It examines all algebraic expressions
that are equivalent to the given query and chooses
the one that is estimated to be the cheapest.

 Interpreter – The Code Generator or the Inter-
preter transforms the access plan generated by the
optimizer into calls to the query processor.

 Query Processor – It actually executes the query.

Query Processing Algorithm
Procedure Query Processing (QP)
Input - Q(x) [i] as query
Output – QR(x) [i] as query result
begin
Step-1 Send Q(x) [i] to data source (DS [i]);
Step-2 Receive QR(x) [i] from DS [i];
Step-3 If (data update, DU(y) [i] exists in source update
queue and x>y)
/* data updates happened concurrently*/
Step-4 QR(x) [i] = QO (Q(x) [i], DU(y) [i], QR(x) [i])
Step-5 End if
Step-6 Return QR(x) [i];
end

Fig2. Algorithm for Query Processing

Query Optimization Algorithm
Procedure Query Optimization (QO)
Input – SQL Query
Output – Execution Plan
begin
Step-1 SQL query contain many of relations, access each re-
lation in the query by all possible manners.
Step-2 Generate a query tree for the sql query.
Step-3 Selection of plans to process each node in query trees
and ordering the nodes for execution.
Step-4 Obtained the estimation cost of each plans & reserved
the cheapest plan for further consideration.
Step-5The cheapest plan is final output of the optimizer to
be used to process the query.
end

Fig3. Algorithm for Query Optimization

4. The query optimizer & processor queries related data

source according to the query arrangement. After re-
ceiving the maintenance query from the warehouse
handler, the source handler processes it through the
compensation of source relations and returns the spe-
cific query answer. Then the warehouse handler at-
taches the final maintenance query answer into the
query result row and informs the view maintenance
manager.

5. After completion of maintenance query related to a
data source update, the maintenance manager re-
moves this data source update from the source up-
date row and also source update manager removes
the data source update and its relational updates from
the related queues upon receiving its completion in-
dication.

6. The view update manager will save the maintenance
results in the commit group temporarily for efficient
updating of materialized view in the DWH. Material-
ized view at the data warehouse is updated by view
update manager using the final maintenance query
result in the query result row and then removes the
query results.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

7. Self maintenance can be processed to maintain the af-
fected view. The affected view can be maintained by
use of the auxiliary view existed in the maintenance
level.

8. Metadata is used to maintain the materialized views.
It can be obtained by manually or through automated
processes. Metadata module maintains catalogue in-
formation about the source and how to contact them,
the relations stored at each source and the schema of
each relation. The metadata module also keeps track
of all view definition [3].

4.3 Warehouse Level

In this, materialized view is used to store aggregate, re-
computed and summarized data. The Data Warehouse is a
group of one or more materialized views of the data source.
There are many of maintenance policies residing that enables
the system to maintain only the necessary data in the data
warehouse instead of maintaining the whole data warehouse.
Base relations in the data warehouse are used to store a layer
of self-maintainable relation. They are also materialized views
and can be thought of as the cleaned and filtered source data
required in the data warehouse. Internal maintenance in the
data warehouse provides session consistency and also de-
scribes the process of maintaining the pre aggregations in the
DWH. Internal Maintenance is started by the system accord
[21].

In [21] authors describe the complete process of internal
maintenance to maintain materialized view in the DWH.
Modification in the materialized views is stored in the delta
tables and it is also used to provide separation between main-
tenance level and warehouse level.

In this level, Metadata provides variety of information
stored in metadata repositories such as information related to
contents, structure and location of the warehouse, information
of different issues like security, authentication etc.

4.4 User Level

This level of framework describes the user requirements &
tasks they need to perform with the help of data warehouse.
User requirements must be collected from people who will
actually use and work with the data warehouse system [22].
After the maintenance process, data in the data warehouse is
readily accessible to end user applications for querying and
analysis purpose. Firstly, end users starts to make simple que-
ries, after that they tend to comes with more complex forms of
data analysis.

5 CONCLUSION

View maintenance is one of the major jobs in data warehousing
environment. Due to improper view maintenance, required re-
sults are practically impossible to achieve from a data warehouse.
In this paper we have proposed a novel framework for data
warehouse view maintenance that is primarily driven by changes
in the materialized view maintenance process of the data ware-
house. Our proposed frame work has been divided into various
levels namely: Source level, Maintenance level, Warehouse level,

user level. The source level converted source data in to the rela-
tional model. The maintenance level performs maintenance proc-
ess between the sources and warehouse is done by using FIFO
network. The warehouse level receives all view definitions and
modifications to the specific syntax of the warehouse database;
internal maintenance is also done in this level. The user level pro-
vides communication between users and warehouse by using
data query. The concept of query optimization is also providing
in maintenance level to reduce the query cost and to speed up the
query processing task.

REFERENCES

[1] N. Huyn, ―Efficient View Self-Maintenance‖, Proceedings of the ACM

 Workshop on Materialized Views: Techniques and Applications, Montreal,

 Canada, June 7, 1996.

[2] D. Quass, A. Gupta, I. S. Mumick, and J. Widom, ―Making Views Self

 Maintainable for Data Warehousing‖, Proceedings of the Conference on

 Parallel and Distributed Information Systems, Miami Beach, FL, December

 1996.

 [3] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, and J.

 Widom, ―A system prototype for view maintenance‖, Proceedings of the

 ACM Workshop on Materialized Views , June 7, 1996, pp. 26-33.

[4] Vincent, M. Mohania, Y. Kambayashi., ― A Self Maintainable View Mainte

 nance Technique for Data Warehouses‖, ACM SIGMOD (1997) 7-22.

[5] N. Huyn, ―Exploiting Dependencies to Enhance View Self Maintainability‖

 http://wwwdb.stanford.edu/ pub/papers/fdvsm.ps. Technical Note,

 1997.

 [6] Mukesh Mohania, Kamalakar Karlapalem and Yahiko Kambayashi, ―Main

 tenance of Data Warehouse Views Using Normalisation‖, Dexa’99, LNCS

 1677, pp. 747-750, 1999.

[7] Tok Wang Ling, Eng Koon Sze. ― Materialized View Maintenance Using

 Version Numbers‖, Proceedings of the Sixth International Conference on

 Database Systems for Advanced Applications, 1999.

[8] Gianulca Moro, Claudio Sartori, ―Incremental Maintenance of Multi-

 Source Views‖, Proceedings of the 12th Australasian database conference

 2001.

[9] Cheng Hua, Ji Gao, Yi Chen, Jian Su, ―Self-maintainability of deletions of

 materialized views over XML data‖, International conference on machine

 learning and cybernetics, 2003.

[10] Sandra de Amo, Mirian Halfeld Ferrari Alves, ―Incremental Maintenance

 of Data Warehouses Based on Past Temporal Logic Operators‖,J.UCS 10

 (9): 1035-1064 (2004).

[11] Hao Fan, ―Using Schema Transformation Pathways for Incremental View

 Maintenance‖, Proceedings of the 7th international conference on Data

 Warehousing and Knowledge Discovery (2005).

[12] Hao He, Junyi Xie, Jun Yang, Hai Yu, ―Asymmetric Batch Incremental

 View Maintenance‖, 21st International Conference on Data Engineering,

 2005.

 [13] Himanshu Gupta, Inderpal Singh Mumick, Incremental maintenance

. Information Systems, Vol. 31, Nr. 6 (2006), p. 435--464.

 [14] Hai Liu, Yong Tang, Qimai Chen, The Online Cooperating View Mainte

 nance Based on Source View Increment. CSCWD 11th International con

 ference, pp. 753-756, April 2007

[15] A.N.M.B. Rashid and M.S. Islam, ― Role of Materialized View Mainte

 nance with PIVOT and UNPIVOT Operators‖, IEEE International Ad

 vance Computing Conference (IACC’09), Patiala, India, pp. 951-955,

 March 6-7, 2009.

[16] Lijuan Zhou, Qian Shi, Haijun Geng, ―The Minimum Incremental Mainte

http://www.springerlink.com/content/?Author=Mukesh+Mohania
http://www.springerlink.com/content/?Author=Kamalakar+Karlapalem
http://www.springerlink.com/content/?Author=Yahiko+Kambayashi
http://dl.acm.org/author_page.cfm?id=81451597827&coll=DL&dl=ACM&trk=0&cfid=96459227&cftoken=67952705
http://dl.acm.org/author_page.cfm?id=81100606786&coll=DL&dl=ACM&trk=0&cfid=96459227&cftoken=67952705
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Amo:Sandra_de.html
http://www.bibsonomy.org/author/Gupta
http://www.bibsonomy.org/author/Mumick

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 nance of Materialized Views in Data Warehouse‖, 2nd International Asia

 Conference (CAR), March 2010.

 [17] C.Zhang, Xin Yao, ―An Evolutionary Approach to Materialized Views

 Selection in a Data Warehouse Environment‖, IEEE Transactions on sys

 tems, Man, and Cybernetics, Vol.31, No.3, August 2001.

[18] X.Wang, L.Gruenwald, G.Zhu, ―A Performance Analysis of View Mainte

 nance Techniques for Data Warehouses‖, Submitted to Journal of Knowl

 edge and Data Engineering, July 2004.

[19] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. ―View mainte

 nance in a warehousing environment‖, In SIGMOD,pages 316–327, San

 Jose, California, May 1995.

[20] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, Michael Watzke. ―A Com

 parison of Three Methods for Join View Maintenance in Parallel RDBMS‖,

 ICDE 2003: 177-188.

[21] Michael Teschke, Achim Ulbrich, ―Concurrent Warehouse Maintenance

 without Compromising Session Consistency‖, Proceedings of the 9th Inter

 national Conference on Database and Expert Systems Applications. pg

 776-785, 1998.

[22] R.M. Bruckner, B.List, J.Schiefer, ―Developing Requirements for Data

 warehouse Systems with Use cases‖, AMCIS Proceedings. Pg-66, 2001.

[23] R.Ghaemi, A.M.Frad, H.Tabatabaee, M.Sadeghizadeh, ― Evolutionary

 Query Optimization for Heterogeneous Distributed Database Systems‖,

 World Academy of science. September 2008.

[24] Yannis E. Ioannidis, ―Query Optimization‖, published in Journal ACM

 Computing Surveys, volume 28, march 1996.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luo:Gang.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Naughton:Jeffrey_F=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Watzke:Michael.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2003.html#LuoNEW03

